Magnetostrictive Actuator

Project Proposal

Randall Bateman, Aaron Bolyen, Chris Cleland Alex Lerma, Xavier Petty, Michael Roper

December 11, 2015

Overview

- Introduction
- Need Statement/Goals
- Constraints for Project/Design
- CAD Model Images of Proposed Design
- Justifications for Design
- Material Selection for Design
- Bill of Materials
- Risk Management
- Contingencies
- Design Alternatives
- Gantt Charts
- Conclusion

Introduction

- Honeywell Aerospace designs and manufactures numerous products and services for the commercial and military aircraft industry
- Honeywell contacts initiating the project are Michael McCollum, the Chief Engineer of Pneumatic Controls Technology for Honeywell and Mitchell Thune, a recent NAU graduate who is working with Michael McCollum on this project
- The clients want to replace an standard electromagnetic solenoid with a solenoid using a magnetostrictive material, Terfenol-D, in the pneumatic control systems used on commercial airliners

Need Statement

Currently, there are no feasible actuators for aircraft valve systems using the magnetostrictive material Terfenol-D.

Project Goal

The goal of this project is to develop a viable actuator that applies the magnetostrictive properties of Terfenol-D.

Constraints

- At least 25lbf of force exerted
- Need at least 0.03in stroke (based off of 3in length rod)
- Must cost less than \$5000
- Must be smaller than 3 x 5 x 12in
- Coefficients of thermal expansion must be constant throughout device
- System must be cooler than 212°F
- Greater than 1:10 ratio of input to output distances

Proof of Concept

- Design coil to generate a magnetic field
 - 30mT
 - 2A
 - 12V
- Prove that the small stroke can be amplified
 - 75µm converted to ~1mm

Dimensions of Design

Calculations and Justifications

- Terfenol-D Dimensions
 - Based on maximum force output of Terfenol-D at 1000lbf
 - A 0.25in diameter rod can handle the compressive stress
 - Factor of safety is 8.54
 - A 0.125in diameter rod of Terfenol-D will also handle the compressive stress, but due to the large cost of the material, the diameter is pushed up to 0.25in diameter
- Solenoid Dimensions
 - The solenoid must produce around 200mT for the correct stroke length
 - With the amperage capacity of 30 gage magnetic wire, the 200mT can be produced with 6954 turns
 - The outer diameter of the solenoid results in 0.822in

Calculations and Justifications Continued

- Stress Concentrations
 - The primary failure points are points where there is a drastic change in geometry
 - These locations are the notches in the pistons, the large piston shoulder, and the slope change within the lever
 - The material selected has high yield strength, so the majority of the components can be machined from the same material stock
- Lever Pressure
 - To ensure 25lbf output the input must be over 400lbf
 - The resulting pressure is 132.4psi
 - Thickness of 0.08in which provides a factor of safety at 13.5
 - At max input force of 1000lbf, the pressure is 318.3psi

Calculations and Justifications Continued

- Bolt Thread Depths
 - The two common bolt diameters that can fit within the casing are 0.25in and 0.125in
 - The 0.125in bolt fails under the tensile load
 - The thread engagement length for the 0.25in diameter bolt is 0.4in to get a factor of safety greater than 2
- End Plate Loading
 - The end plate is supported in 5 locations with the maximum bending stress and shear stress at the center
 - The center is supported by the 0.25in core stop
 - The required thickness of the end plate must be at least 0.162in
 - The accepted thickness is 0.25 in with a factor of safety above 2

Material Selections

- Bolt Selection: Stainless Steel Grade 316
- Lever Material: Aluminium 2011-T3
- Piston Material: Aluminium 2011-T3
- Solenoid Casing: Soft Iron, ASTM A848
- Solenoid Wiring: 30 Gage Magnetic Copper Wire
- Lever Fluid: SAE J1703 Brake Fluid
- Seal: Teflon

Bill of Materials

Component	Manufacturing Cost (\$)	Purchasing Cost (\$)	Qty.
Terfenol-D core	Included with Purchase	447.00	1
Soft iron casing	Included with Purchase	138.00	1
Aluminum casing	1.31	48.74	1
Magnetic coil	Included with Purchase	TBD	1
0.25in bolt	N/A	5.59	4
0.125in bolt	N/A	0.51	1
Brake fluid	N/A	4.99	TBD
Teflon seal	Included with Purchase	15.00	2
250V USA Power Plug adapter	N/A	6.08	1
Total	698.9	99	

Risk Management

- All factors of safety are 2 or higher
- Stress concentrations at changing geometry have been taken into account
- Several components of the design are stronger than required due to other constraints. For example: The width of the large piston must be several times longer than needed to prevent failure, because it must also be able to handle bolt depths
- All materials are designed to never go above yield strength
- Non-solenoid components are made from materials with very low magnetic permeability
- Solenoid temperature is designed to never exceed 212°F
- Consider purchasing additional Terfenol-D at beginning of second semester

Contingencies

- Class 1 lever can be used if hydraulic lever does not function correctly
- Custom manufacturing if closer tolerances are needed
- Increase solenoid diameter if Terfenol-D's stroke is too small
- Have a third party pressurize the lever
- Increase piston lengths to help maintain airtight seal
- Bolts can be tightened or loosened to change prestress value*
- If failure occurs, then reiterate with higher factors of safety

* The pre-stress value must be obtained during testing due to opposing stroke vs. pre-stress relationships

Possible Design Alternatives

- Ferrofluid Hydraulic Lever
- Vibrating Wire Hysteresis Control
- Iron Filings Hysteresis Control
- Randomized Magnetic Field for Hysteresis Control
- Adding a Valve to the Output Stroke
- Hollow Terfenol-D Core
- Permanent Magnets to Create Magnetic Exchange Bias

Updated Fall 2015 Gantt Chart

Activity	Schedule (In weeks)																
Activity	1	2	3	4	5	6	7	8		9	10	11	12	13	14	15	16
Preliminary Research								ļ			1		İ				
Gather Materials			Ì														
Design System			}														
Draft Designs				İ						-							
Design Selection			Ì								1						
Create Proof of Concepts Prototype			l	ļ													
Re-design				Ì													
Testing Material and System			Ì					ļ			į.						
Material Data Collection																	
System Data Collection								i									
Milestones																	
Client Meetings			•								•					•	
Problem Definition and Project Plan				♦				İ									
Concept Generation and Selection								¢	•								
Proof of Concept Presentation													↓				
Project Proposal																•	

Spring 2016 Gantt Chart

Task		Schedule (In weeks)															
	18-Jan	25-Jan	1-Feb	8-Feb	15-Feb	22-Feb	Feb-29	7-Mar	14-Mar	21-Mar	28-Mar	4-Apr	11-Apr	18-Apr	25-Apr	2-May	9-May
Order/Aquire Materials																	
Estimate Lead Times																	
Obtain Quotes																	
Machining Materials											l						
Aluminum Casing & Piston						1				1							Ì
Aluminum Corestop & Endcap																	
Alpha Prototye						-				ł							ł
Building System						1											
Assemble Mechanical Components											ļ						
Lever Assembly										-							
Testing			-														
Static and Dynamic Stess Test						ļ				l	l						
Functionality Test																	
Fatigue Test						Ī	ļ				1						
Redesign System							I										
Test Alternative Concepts	-							•									
Beta Prototype																	
Building System												r					
Testing																	
Redesign											-						
Additional Prototypes (If Needed)																	
Finalize Design														•			
Building System											ļ						
Testing																	
Compile Results																	
Milestones																	
Alpha Prototye Completion						\$											
Beta Prototype Completion										ò							
Design Finalized																\$	
Client Meetings							\$				٥						\$

Conclusions

- Our goal is to design a feasible actuator using the magnetostrictive material Terfenol-D
- The proof of concept demonstrated that our design can amplify the stroke through a lever system and produce a sufficient magnetic field
- The overall dimensions of the current design are 7.31 x 2.25 in diameter
- The most costly component of the design is the Terfenol-D itself, the overall cost for materials is \$698.99
- Stress values and concentration factors were calculated to determine the most efficient material to use
- Several contingency plans are outlined and alternative designs options are described
- January, 2016 will begin with the construction of first prototype

References

- ETREMA Products, Inc., 'Terfenol-D ETREMA Products, Inc.', 2015. [Online]. Available: http://www.etrema.com/terfenol-d. [Accessed: 1- Dec - 2015].
- Mcmaster.com, 'McMaster-Carr', 2015. [Online]. Available: http://www.mcmaster.com/. [Accessed: 08- Dec- 2015].
- Autozone.com, 'Prestone/12 oz. DOT 4 brake fluid', 2015. [Online]. Available: http://www.autozone.com/brake-and-power-steering-fluid-additives/brake-fluid/prestone-12-oz-dot-4-brake-fluid/433371_0_0/. [Accessed: 05- Dec- 2015].
- Fastenal.com, 'Products', 2015. [Online]. Available: https://www.fastenal.com/products/. [Accessed: 08 Dec- 2015].
- Ahpseals.com, 'Spec-A-Seal-American High Performance Seals', 2015. [Online]. Available: http://www.ahpseals.com/services/calc_piston_V2b.php5?sid=43S. [Accessed: 03- Dec- 2015].
- H. Roters, Electromagnetic Devices. New York: John Wiley & Sons, Inc, 1941.
- M. McCollum, 'Solenoid Design: Pneumatic Controls Engineering Lecture 9', Online.